Artiklar och presentationer

A DFN–DEM Multi‑scale Modeling Approach for Simulating Tunnel Excavation Response in Jointed Rock Masses

Based on the concept of the representative elementary volume (REV) and the synthetic rock mass (SRM) modeling technique, a DFN–DEM multi-scale modeling approach is proposed for modeling excavation responses in jointed rock masses. Based on the DFN models of various scales, equivalent rock mass properties are obtained using 3DEC SRM models. A tunnel excavation simulation using data from the Äspö TAS08 tunnel is conducted to demonstrate the applicability of the proposed multi-scale modeling approach.

The role of rock mass heterogeneity and buckling mechanisms in excavation performance in foliated ground at Westwood Mine, Quebec

Operations at Westwood mine in Quebec, Canada were temporarily halted in May 2015 after three large-magnitude seismic events occurred over two days. The mechanisms leading to these events, which caused severe damage to several accesses, were not well understood at first. This paper presents the key aspects of FLAC3D back-analysis modelling, which include (1) an anisotropic rock mass strength model with properties derived from field and laboratory strength testing, and (2) a scheme to account implicitly for the deconfinement that accompanies buckling around excavations.

Uppblockning, markdeformationer och inverkan av strukturer vid skivrasbrytning

Caving, ground surface deformations and the influence of structures when mining by sublevel caving (paper in Swedish)

Raiseborrning i svåra bergförhållanden - Litteratur och praktikfallsstudie

Raiseboring in difficult rock conditions - literature and case studies (presentation in Swedish)

Bergmekaniska analyser för Bolidens djupförvar vid smältverket Rönnskär

Rock mechanical analysis for Boliden's deep repository at the Rönnskär smelter (presentation in Swedish)

Formulation and Application of a Constitutive Model for Multijointed Material to Rock Mass Engineering

This paper presents the formulation of a constitutive model to simulate the behavior of foliated rock mass. The 3D elastoplastic constitutive model, called Comba, accounts for the presence of arbitrary orientations of weakness in a nonisotropic elastoplastic matrix.

PFC (Particle Flow Code): Rock Cutting Excerpt

Historical development and engineering applications using PFC2D and PFC3D.

Numerical Models as Important Component of EGS Design and Operation

Calibration of geomechanics models using microseismic data is key to creating reliable predictive tools. This presentation reviews the geomechanical model used for: stress characterization, microseismic modeling to assess the risk associated with faults activation and induced seismicity, and evaluation of designs and operational strategies. Both hydraulic fracturing and hydro-shearing of discrete fracture network were important components of stimulation of EGS and zonal isolation can play a key role in effective stimulation of an EGS along the entire length of the horizontal well.

FLAC3D Soil-structure Model of a Building

SOIL – STRUCTURE INTERACTION | FLAC3D - midas GEN DIRECT LINK

A Strategic Rock Mechanics Study for The Kevitsa Open Pit Mine

The Boliden Kevitsa open pit mine is revising its strategic plan with a new pit optimization project undertaken to investigate an increase in production.

Numerical modelling and seismicity at the Kiirunavaara Mine

What’s happening at the Kiirunavaara Mine?

Regional-scale numerical stress model of the Stockholm area

Analyze the initial stress state in the central and southern areas of Stockholm for the Metro to Nacka and Southern Stockholm.

Deep Sublevel Cave Mining and Surface Influence

With increasing depth, higher stress and more difficult mining. With increasing depth is there more ground surface effects or less?

Tunneldrivning i heterogena förhållanden

InledningProblem: Brist på erfarenhet av tunneldrivning i heterogena förhållanden med konventionell uttagsteknik (borrning och sprängning).

Mål: Fördjupa kunskapen och förståelse av brott och deformationsmönster vid dessa förhållanden.

Tunnelling and reinforcement in heterogeneous ground – A case study

Abstract

A case study of tunnelling in heterogeneous ground conditions has been analysed. The case involves a tunnel excavated in mixed-face conditions, where the main host material was rock, but for a distance of about 30 m, the tunnel had to be driven through a thick layer of soil, primarily moraine and sandy soil materials.During tunnel drifting, a "chimney" cave developed through the soil layer, resulting in a surface sinkhole.This case was analysed using a three-dimensional numerical model with the FLAC3D software code, in which the soil stratigraphy and tunnel advance were modelled in detail. Tunnel and soil reinforcement in the form of jet grouting of the soil, pipe umbrella arch system, bolting, and shotcreting, was explicitly simulated in the model. The studyaimed at comparing model results with observations and measurements of ground behaviour, and to replicate the major deformation pattern observed. The modelling work was based on a previous generic study in which various factors influencing tunnel and ground surface deformations were analysed for different cases of heterogeneous ground conditions.Model calibration was performed through adjusting the soil shear strength. The calibration provided a qualitatively good agreement with observed behaviour. Calculated deformations on the ground surface were in line with measured deformations, and the location of the tunnel collapse predicted by the model. The installed tunnel reinforcement proved to be critical to match with observed behaviour. Without installed pipe umbrella arch system, calculated deformations were overestimated, and exclusion of jet grouting caused collapse of the tunnel. These findings prove that, in particular, jet grouting of the soil layer was necessary for the successful tunnel advance through the soil layer.

Application of InSAR for Monitoring Deformations at the Kiirunavaara Mine

Assess the use InSAR technology for LKAB's purposes - as a replacement and/or complement to current GPS measurements.

Three-dimensional Modeling and Stress Calibration for a Complex Mining Geometry

Study stress situation for potential continued mining towards greater depths; stress calibration against stress measurements using numerical modeling; and use of calibrated model to study stresses at existing infrastructure, study stresses at potential future haulage level locations, and as input to local models.

Input to Orepass Design — A Numerical Modeling Study

Orepass design guidelines required for potentially continued mining at depth. Rock strength and stress state were validated through comparison with observed fallouts in orepasses and shafts and the optimal orientation and location of orepasses for future mining were determined.

Caving in the Fabian Orebody —from Mining Stope to Cave Crater in Malmberget

The Fabian orebody is a non-daylighting iron orebody in the LKAB Malmberget Mine in northern Sweden. During 2010, a prognosis of the cave development in the Fabian area was developed, based on compilation and analysis of all available material. In March 2012, a new cave crater formed on the ground surface above the Fabian orebody, similar to what was predicted. The prognosis is compared with observations of the caving and the differences and implications quantified. A program for continued monitoring of mining-induced deformation in Malmberget is also described and a criterion for allowable mining-induced surface deformations is proposed.

Senaste nytt
  • Griddle 2.0 Pre-release Now Available Griddle offers automatic, interactive, and easy-to-use surface meshing and volume grid generation capabilities for FLAC3D,...
    Läs mer
  • Nyhetsbrev augusti 2020 ...
    Läs mer
  • Learning FLAC3D 7.0 New FLAC3D introductory tutorials are now available on our website. See how easy it is...
    Läs mer

Kommande händelser
12 okt.
Focused Seismic and Liquefaction Training 2019
... Läs mer