3DEC

Description

3DEC is a three-dimensional numerical modeling code for advanced geotechnical analysis of soil, rock, ground water, structural support, and masonry. 3DEC simulates the response of discontinuous media (such as jointed rock or masonry bricks) that is subject to either static or dynamic loading. The numerical formulation It is based on the distinct element method (DEM) for discontinuum modeling. UDEC is the two-dimensional version.

The discontinuous material is represented as an assemblage of discrete blocks. The discontinuities are treated as boundary conditions between blocks; large displacements along discontinuities and rotations of blocks are allowed. Individual blocks behave (based on constitutive and joint models) as either rigid or deformable (i.e., meshed into finite difference zones) material. Continuous and discontinuous joint patterns can be generated on a statistical basis. A joint structure can be built into the model directly from the geologic mapping. 3DEC also contains Itasca's powerful built-in scripting language FISH. With FISH, you can write your own scripts for users who wish to add functionality for custom analyses.

3DEC 7.0 is a fantastic improvement overall, especially with the updated user interface! The online documentation is a great improvement over using the PDF manuals, especially with the filtering and consolidation improvements.

Rock Mechanics Consulting Finland

Options

Options in 3DEC are sold separately from the general license, allowing users to select the program’s capabilities as meets their own analysis needs without having to purchase all features. Beginning with 3DEC Version 7, the Finite Element Structural Liners option is now included at no additional charge.

Dynamic Analysis: 3DEC simulates the nonlinear response of a system (soil, rock, and structures) to excitation from an external (e.g., seismic) source or internal (e.g. vibration or blasting) sources.

Thermal Analysis: The thermal option in 3DEC allows the simulation of transient heat conduction.

User-Defined Constitutive Models: User-defined constitutive models (UDMs) can be written in C++ for both deformable block materials (zones) and any discontinuities (joints, faults, bedding, artificial surfaces) to calculate new stresses, displacements and strains, for a modified existing material model or a fully customized material behavior.



Senaste nytt
  • Examensarbeten hos Itasca 2023 ...
    Läs mer
  • Nyhetsbrev september 2022 ...
    Läs mer
  • Teknisk support numerisk modellanalys Behöver ni ytterligare hjälp med användning av Itasca:s programvaror i era projekt? Vi erbjuder teknisk...
    Läs mer

Kommande händelser
13 mars
3DEC In-Person Introductory course
Live in-person introductory training course in Minneapolis, Minnesota. This course provides an overview of the capabilities and feature... Läs mer
27 mars
FLAC3D In-Person Introductory Course
Live in-person introductory training course. This 3-day course provides general feature training addressing basic concepts and recommen... Läs mer
30 mars
Griddle In-Person Introductory Course
Live in-person introductory training course. This course provides an overview of the capabilities and features of Rhino3D CAD software ... Läs mer