Lär dig mer

Programvaruhandledning

MINEDW Tutorial (Part 2: Visualization Options)

In this tutorial we will explore all the visualization components that MINEDW has to offer, and all the options available to the user to visualize the model's components and properties.

MINEDW Tutorial (Part 4: Meshing)

In this tutorial we will go over meshing, from the creation of a 2D mesh and how to import it to MINEDW, to the inclusion of topography, layers, and pinch-outs to different areas of interest in the model.

FLAC3D 7 0 Octree Mesh Tutorial

In this example, a pile of earth is modeled overlying undulating ground. This tutorial demonstrates how a FLAC3D model mesh can be easily created using DXF geometries and the ZONE DENSIFY command. How to differentiate parts of the model into separate GROUPs using DXF geometries and the GEOMETRY-SPACE range logic is also demonstrated.

Artiklar och presentationer

Caving in the Fabian Orebody —from Mining Stope to Cave Crater in Malmberget

The Fabian orebody is a non-daylighting iron orebody in the LKAB Malmberget Mine in northern Sweden. During 2010, a prognosis of the cave development in the Fabian area was developed, based on compilation and analysis of all available material. In March 2012, a new cave crater formed on the ground surface above the Fabian orebody, similar to what was predicted. The prognosis is compared with observations of the caving and the differences and implications quantified. A program for continued monitoring of mining-induced deformation in Malmberget is also described and a criterion for allowable mining-induced surface deformations is proposed.

GPR-inferred fracture aperture widening in response to a high-pressure tracer injection test at the Äspö Hard Rock Laboratory, Sweden

We assess the performance of the Ground Penetrating Radar (GPR) method in fractured rock formations of very low transmissivity (e.g. T ≈ 10−9–10−10 m2/s for sub-mm apertures) and, more specifically, to image fracture widening induced by high-pressure injections. A field-scale experiment was conducted at the Äspö Hard Rock Laboratory (Sweden) in a tunnel situated at 410 m depth. The tracer test was performed within the most transmissive sections of two boreholes separated by 4.2 m. The electrically resistive tracer solution composed of deionized water and Uranine was expected to lead to decreasing GPR reflections with respect to the saline in situ formation water.

Advanced three-dimensional geomechanical and hydrogeological modelling for a deep open pit
Senaste nytt
  • Itasca at Balkanmine 2025! Itasca is pleased to announce its participation in the Balkanmine 2025 Conference. Our experts Lauriane...
    Läs mer
  • Operativ bergmekanik På ITASCA gillar vi en blandning av fältjobb och analyser. Vi erbjuder stöd inom operativ...
    Läs mer
  • Jennifer firar fem år med strategisk roll ...
    Läs mer