Lär dig mer

Programvaruhandledning

Homogeneous Embankment Dam Analysis (Part 2 of 3)

This FLAC 8.1 tutorial demonstrates how to conduct a steady-state seepage analysis to calculate the pore water pressures in the embankment due to the reservoir.

Proppant in Fluid Filled Joints

The transport and placement of proppant within fractures is modeled in 3DEC by representing the proppant and fracturing fluid as a mixture.

Creating Groups Interactively and Automatically using the Model Pane

In this tutorial, we review how to automatically skin models, identify and group zone faces, and interactively select and group zones and zone faces. This tutorial also illustrates using the Model Pane to interactively add a shell structural element along a tunnel.

Artiklar och presentationer

The role of rock mass heterogeneity and buckling mechanisms in excavation performance in foliated ground at Westwood Mine, Quebec

Operations at Westwood mine in Quebec, Canada were temporarily halted in May 2015 after three large-magnitude seismic events occurred over two days. The mechanisms leading to these events, which caused severe damage to several accesses, were not well understood at first. This paper presents the key aspects of FLAC3D back-analysis modelling, which include (1) an anisotropic rock mass strength model with properties derived from field and laboratory strength testing, and (2) a scheme to account implicitly for the deconfinement that accompanies buckling around excavations.

Three-dimensional Modeling and Stress Calibration for a Complex Mining Geometry

Study stress situation for potential continued mining towards greater depths; stress calibration against stress measurements using numerical modeling; and use of calibrated model to study stresses at existing infrastructure, study stresses at potential future haulage level locations, and as input to local models.

GPR-inferred fracture aperture widening in response to a high-pressure tracer injection test at the Äspö Hard Rock Laboratory, Sweden

We assess the performance of the Ground Penetrating Radar (GPR) method in fractured rock formations of very low transmissivity (e.g. T ≈ 10−9–10−10 m2/s for sub-mm apertures) and, more specifically, to image fracture widening induced by high-pressure injections. A field-scale experiment was conducted at the Äspö Hard Rock Laboratory (Sweden) in a tunnel situated at 410 m depth. The tracer test was performed within the most transmissive sections of two boreholes separated by 4.2 m. The electrically resistive tracer solution composed of deionized water and Uranine was expected to lead to decreasing GPR reflections with respect to the saline in situ formation water.

Senaste nytt
  • Itasca at Balkanmine 2025! Itasca is pleased to announce its participation in the Balkanmine 2025 Conference. Our experts Lauriane...
    Läs mer
  • Operativ bergmekanik På ITASCA gillar vi en blandning av fältjobb och analyser. Vi erbjuder stöd inom operativ...
    Läs mer
  • Jennifer firar fem år med strategisk roll ...
    Läs mer