Features in MINEDW

Finite-Element Grid

The grid is specified in terms of triangular prisms and facilitates representation of complex geometries and highly-variable spatial discretization, which is particularly useful for mining applications with complex geologic structures and steep hydraulic gradients.

Progressive Geometry

The elevation of nodes of the finite-element grid can be defined to vary through time. This enables more accurate representation of the underground workings and open pits according to the mine schedules being evaluated.

Saturated/Unsaturated Flow

The finite-element grid can remain fixed through time (with the exception of excavations), and the saturated flow domain can change through time in accordance with changes in the water table, further facilitating representation of the spatial hydrogeologic variability of the groundwater system without additional computational overhead of solving unsaturated flow equations.

3D Graphics

Represent geology, model domain, pit geometry, groundwater heads, and pore pressures in 3D.

Flexible Boundary Conditions


Boundary conditions can be represented as specified-head, specified-flux, and internal source-sink terms (each of which can be variant or invariant with time), or as variable-flux boundaries that simulate time-variant fluxes in response to changing boundary heads and an infinite aquifer.

Very Transmissive Zones


By defining links between specific node pairs with enhanced conductivity, very transmissive zones can be used to accurately represent tunnels, underground workings, declines, conductive faults, wells pumping from multiple layers, etc.

Groundwater/Surface-Water Interaction


Streams are simulated as river networks of hydraulic compartmentalization and the model simulates river depletions and additions from exchange with groundwater.

Evaporation/Evapotranspiration


Loss of water from bare/vegetated soils can be simulated and is proportional to the distance between the ground surface and water table, with maximum evaporation rate and extinction depth as constraints.

Pit Lakes


Excavation and pit-lake infilling of multiple pits can be simulated within the same model domain and their respective mining schedules represented simultaneously. The model also provides node-bynode fluxes into/out of the pit lake, evaporation and precipitation on the lake surface, and predictions of lake stages as a function of time, which can readily be used to predict detailed hydrodynamic and geochemical pit-lake conditions and to predict pit-wall seepage during mining.

Time-Variant Conductivity


Can be used to represent the zone of relaxation around excavations, backfilling operations, longwall and room-and-pillar coal mining, freeze-thaw conditions, or other scenarios where hydraulic conductivity may change during the simulation period.

Numerically Stable


Due in part to the finite element grid and the numerical methods applied in the model, MINEDW is typically very stable numerically. This is particularly important in cases where there is a high degree of hydraulic compartmentalization with steep hydraulic gradients.

MINEDW Updates

Latest News
  • Newsletter October 2023 ...
    Read More
  • Newsletter August 2023 ...
    Read More
  • New General Manager for ITASCA Sweden We have appointed a new GM in Sweden!...
    Read More

Upcoming Events
22 Oct
Getting Started with 3DEC
Objectives of the training: Understand the 3DEC numerical approach and the types of problems it can solveKnow how to manipulate the 3DE... Read More
5 Nov
Python in Itasca Software
This course provides an overview of the Python programming language in Itasca software.The course covers major applications of Python t... Read More
19 Nov
Getting Started with FLAC2D/FLAC3D
This training is an introduction to continuous modeling with FLAC2D and FLAC3D. At the end of the course, participants will master the ... Read More